JUN cooperates with the ETS domain protein pointed to induce photoreceptor R7 fate in the Drosophila eye

نویسندگان

  • Mathias Treier
  • Dirk Bohmann
  • Marek Mlodzik
چکیده

R7 photoreceptor fate in the Drosophila eye induced by the activation of the Sevenless receptor tyrosine kinase and the RAS/MAP kinase signal transduction pathway. We show that expression of a constitutively activated JUN isoform in ommatidial precursor cells is sufficient to induce R7 fate independent of upstream signals normally required for photoreceptor determination. We present evidence that JUN interacts with the ETS domain protein Pointed to promote R7 formation. This interaction is cooperative when both proteins are targeted to the same promoter and is antagonized by another ETS domain protein, YAN, a negative regulator of R7 development. Furthermore, phyllopod, a putative transcriptional target of RAS pathway activation during R7 induction, behaves as a suppressor of activated JUN. Taken together, these data suggest that JUN and Pointed act on common target genes to promote neuronal differentiation in the Drosophila eye, and that phyllopod might be such a common target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

β amyloid protein precursor-like (Appl) is a Ras1/MAPK-regulated gene required for axonal targeting in Drosophila photoreceptor neurons.

In a genome-wide expression profile search for genes required for Drosophila R7 photoreceptor development we found β amyloid protein precursor-like (Appl), the ortholog of human APP, which is a key factor in the pathogenesis of Alzheimer's disease. We analyzed Appl expression in the eye imaginal disc and found that is highly accumulated in R7 photoreceptor cells. The R7 photoreceptor is respons...

متن کامل

Function of ets genes is conserved between vertebrates and Drosophila

The Drosophila pointed gene encodes two ETS transcriptional activators, pointedP1 and pointedP2, sharing a common C-terminal ETS domain. In the embryonic central nervous system pointedP2 is required for midline glial cell differentiation, whereas, in the eye, pointedP2 is essential for photoreceptor cell differentiation. Both vertebrate c-ets-1 and c-ets-2 gene ETS domains are highly homologous...

متن کامل

The sevenless signaling pathway: variations of a common theme.

Many developmental processes are regulated by intercellular signaling mechanisms that employ the activation of receptor tyrosine kinases. One model system that has been particular useful in determining the role of receptor tyrosine kinase-mediated signaling processes in cell fate determination is the developing Drosophila eye. The specification of the R7 photoreceptor cell in each ommatidium of...

متن کامل

Distinction between color photoreceptor cell fates is controlled by Prospero in Drosophila.

The Drosophila compound eye consists of approximately 750 independently functioning ommatidia, each containing two photoreceptor subpopulations. The outer photoreceptors participate in motion detection, while the inner photoreceptors contribute to color vision. Although the inner photoreceptors, R7 and R8, terminally differentiate into functionally related cells, they differ in their molecular ...

متن کامل

Ligand-independent activation of the sevenless receptor tyrosine kinase changes the fate of cells in the developing Drosophila eye.

Cell fate in the developing eye is determined by a cascade of inductive interactions. In this process, the sevenless protein--a receptor tyrosine kinase--is required for the specification of the R7 photoreceptor cell fate. We have constructed a gain-of-function sevenless mutation (SevS11) by overexpressing a truncated sevenless protein in the cells where sevenless is normally expressed. In SevS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 83  شماره 

صفحات  -

تاریخ انتشار 1995